ICENOTE 108:

Tests for IceCube DOMs

Azriel Goldschmidt

Jan 2003

Converted to icenote 5/15/03 rhm vsn 0.1

Renumbere 108 7/17/03 rhm

Scope and purpose of this document

The first prototypes of IceCube Digital Optical Modules Main Board (DOMMB) are expected early in January 2003. The first phase of testing will be mostly voltmeter and oscilloscope driven, looking for possible shorts or disconnected traces or parts, etc. Passed that point, more sophisticated tests need to be performed. These involve exercising the various parts on the DOMMB such as digitizers, discriminators, pulsers, etc. For these, software needs to be written. This document describes the tests that should be performed by the test software. We are aiming for pass/no-pass type of tests. However, some of the data produced in the testing procedure will need to be preserved and archived in a database for future reference.

For each test, the following are listed:

1. A list of the required functionality to run it

2. A list of relevant previous tests

3. The list of input values and controls: their meaning, default values and type

4. The list of output values and their meaning/type

5. The procedure of the test and the criteria for pass/no-pass (if relevant)

Temporary notes:

1. A few fields are defined for each test, Name, Version, Loop count (which will have slightly different meaning in each case because it lives inside the test, pass/fail output (still need to define the case of N/A) and the value when an error occurs, error code, error string.

2. Give a list of previous relevant tests.

3. Notes from Bruce, speed of ATWDs 1.5+-0.05, baseline 100 +- 20 ???, amplitude 160 +- 4

Tests

1. ADC tests

In this test a single ADC channel (a board voltage or current) is read out multiple times and the mean, spread, maximum and minimum are compared to expectations to define a pass-no pass criteria.

Previous relevant tests: None

Required functionality:

· Read all ADC channels (8 channels of CS0 currently used in Jan 03 version board)

	Name of Variable
	Description
	InputOutput & Type
	Default & Range

	ADC_CHIP
	Selects one of the ADC chips on the board (0 = ADC_CS0 and 1 = CS1)
	Input

Unsigned Short
	0 [0-1]

	ADC_CHANNEL
	Selects on of the channels of the ADC chip to be read out
	Input

Unsigned Short
	0 [0-7]

	LOOP_COUNT
	Number of ADC values to acquire to compute a mean and spread
	Input Generic

Unsigned Long
	1000 [0-1,000,000]

	TEST_PASS_NOPASS
	ADC values for this channel pass or not the test criteria
	Output Generic

Boolean
	

	ADC_MEAN_COUNTS

	Mean of the ADC values distribution in count units
	Output

Unsigned Short
	

	ADC_RMS_COUNTS

	Spread of the ADC values distribution in count units
	Output

Unsigned Short
	

	ADC_MAX_COUNTS
	Maximum ADC value read in count units
	Output

Unsigned Short
	

	ADC_MIN_COUNTS

	Minimum ADC value read in count units
	Output

Unsigned Short
	

	ADC_MEAN_MVOLT_OR_MAMP

	Mean of the ADC values distribution in milivolts or miliamp units
	Output

Unsigned Short
	

	ADC_RMS_ MVOLT_OR_MAMP
	Spread of the ADC values distribution in milivolts or miliamp units
	Output

Unsigned Short
	

	ADC_MAX_ MVOLT_OR_MAMP
	Maximum ADC value read in milivolts or miliamp units
	Output

Unsigned Short
	

	ADC_MIN_ MVOLT_OR_MAMP

	Minimum ADC value read in milivolts or miliamp units
	Output

Unsigned Short
	

The test proceeds as follows:

A. Perform LOOP_COUNT readouts of the ADC from channel ADC_CHANNEL of the ADC chip (chip-select) ADC_CHIP and calculate the mean ADC_MEAN_COUNTS (keeping the running sum in a Unsigned Long and dividing by LOOP_COUNT at the end).

B. Perform additional LOOP_COUNT readouts of the same ADC and save the maximum and minimum values in ADC_MAX_COUNTS and ADC_MIN_COUNTS. Also calculate the standard deviation using the previously calculated ADC_MEAN_COUNTS: ADC_RMS_COUNTS =

sqrt(1/(LOOP_COUNT-1) * Sum{(ADCj - ADC_MEAN_COUNTS)2}

C. Translate the mean, standard deviation and min & max from “counts” to miliamp/milivolt units using the translations below, and fill the corresponding output variables:

· For channel A (ADC_CHANNEL=0):

 ADC_XXX_ MVOLT_OR_MAMP = ADC_XXX_ COUNTS / 2
· For channel B (ADC_CHANNEL=1): (no translation for pressure here) ADC_XXX_ MVOLT_OR_MAMP = ADC_XXX_ COUNTS

· For channel C (ADC_CHANNEL=2):

 ADC_XXX_ MVOLT_OR_MAMP = ADC_XXX_ COUNTS * 2500 / 4095 * ((10+24.9)/10) (tell Gerry!)

· For channel D (ADC_CHANNEL=3):

 ADC_XXX_ MVOLT_OR_MAMP = ADC_XXX_ COUNTS / 20

· For channel E (ADC_CHANNEL=4):

 ADC_XXX_ MVOLT_OR_MAMP = ADC_XXX_ COUNTS / 20
· For channel F (ADC_CHANNEL=5):

 ADC_XXX_ MVOLT_OR_MAMP = ADC_XXX_ COUNTS / 20
· For channel G (ADC_CHANNEL=6):

 ADC_XXX_ MVOLT_OR_MAMP = ADC_XXX_ COUNTS / 20
· For channel H (ADC_CHANNEL=7):

 ADC_XXX_ MVOLT_OR_MAMP = ADC_XXX_ COUNTS / 2
D. Define a pass/no-pass criteria and set TEST_PASS_NOPASS accordingly. Use the following table to determine the limits on the different output variables (pass is the logical AND of all the conditions for a given channel):

	Name of Variable
	ChA (0)
	ChB (1)
	ChC (2)
	ChD (3)
	ChE (4)
	ChF (5)
	ChG (6)
	ChH (7)

	ADC_MEAN_COUNTS

	
	
	
	
	
	
	
	

	ADC_RMS_COUNTS

	
	
	
	
	
	
	
	

	ADC_MAX_COUNTS
	< 4095
	
	< 4095
	< 4095
	< 4095
	< 4095
	< 4095
	< 4095

	ADC_MIN_COUNTS

	> 0
	
	> 0
	> 0
	> 0
	> 0
	> 0
	> 0

	ADC_MEAN_MVOLT_OR_MAMP

	> 200-20 &&

< 200+20
	
	> 2000-100 &&

< 2000+100 (always true)
	
	
	
	
	

	ADC_RMS_ MVOLT_OR_MAMP
	 < 20
	
	<20
	
	
	
	
	

	ADC_MAX_ MVOLT_OR_MAMP
	< 200+40
	
	< 2000+120 (always true)
	
	
	
	
	

	ADC_MIN_ MVOLT_OR_MAMP

	> 200-40
	
	> 2000-120
	
	
	
	
	

2. DAC test

3. Flasher Board Interface test

4. On-board LED Interface test

5. HV Interface test

6. PMT Signal Discriminator test

7. ATWD tests

Previous relevant tests:

· DAC setting

Required functionality:

· Set all ATWD-related DACs for both ATWD chips.

· Set SPE discriminator threshold DAC.

· FPGA: Forced launch of ATWD.

· FPGA: SPE Discriminator launch of ATWD.

· FPGA: read out single ATWD waveforms.

7.1 Pedestal

In this test a number of waveforms from an ATWD chip/channel are collected to form an average pedestal waveform. The ATWD capture can be launched by either forcing it or by setting the SPE discriminator level within the noise band. The average pedestal waveform is then analyzed and a pass/no-pass is defined based on the range of pedestal values. The average pedestal waveform can be requested as an output.

	Name of Variable
	Description
	InputOutput & Type
	Default & Range

	ATWD_CONV_SPEED_DAC
	DAC setting (of a 12 Bit device) for ATWD sampling speed
	Input

Unsigned Integer
	2000 [0-4095]

	ATWD_RAMP_TOP_DAC
	DAC setting (of a 12 Bit device) for ATWD Ramp Top Voltage
	Input

Unsigned Integer
	2400 [0-4095]

	ATWD_RAMP_BIAS_DAC

	DAC setting (of a 12 Bit device) for ATWD Ramp Bias current
	Input

Unsigned Integer
	350 [0-4095]

	ATWD_ANALOG_REF_DAC

	DAC setting (of a 12 Bit device) for ATWD Analog Reference Voltage
	Input

Unsigned Integer
	2300 [0-4095]

	ATWD_PEDESTAL_DAC
	DAC setting (of a 12 Bit device) for ATWD Pedestal Voltage
	Input

Unsigned Integer
	2200 [0-4095]

	ATWD_CHIP_A_OR_B

	Selects one of two chips (A or B) on the board:0=ATWD-A and 1=ATWD-B
	Input

Boolean
	0 [0,1]

	ATWD_CHANNEL

	Selects one of 3 PMT analog signal channels with different gains
	Input

Unsigned Integer
	0 [0,1,2]

	ATWD_TRIG_FORCED_OR_SPE

	Selects ATWD launch method: 0=forced trigger, 1=SPE discriminator trigger
	Input

Boolean
	0 [0,1]

	SPE_DISCRIMINATOR_UVOLT

	SPE discriminator in microvolts (at the PMT input). 5000 = 5mV ~ 1 SPE
	Input

Signed Short
	0

[-5,000 - 5,000]

	LOOP_COUNT
	Number of waveforms to take and average over before analysis
	Input Generic

Unsigned Long
	1000 [0-1,000,000]

	FILL_OUTPUT_ARRAYS

	Fill up the output array with the average waveform. 0=do-not-fill, 1=fill-array
	Input Generic

Boolean
	1 [0,1]

	TEST_PASS_NOPASS
	Average waveform passes or not the criteria (gain, ?)
	Output Generic

Boolean
	

	ATWD_PEDESTAL_AMPLITUDE

	Is the peak-to-peak amplitude of the averaged pedestal waveform
	Output

Unsigned Short
	

	ATWD_PEDESTAL_PATTERN

	Average pedestal pattern waveform in ATWD counts units.
	Output

Unsigned Integer Array[128]
	

The test proceeds as follows:

A. All five ATWD DAC settings are programmed.

B. The ATWD trigger mask is written according to ATWD_TRIG_FORCED_OR_SPE.

C. If the SPE trigger was requested (ATWD_TRIG_FORCED_OR_SPE=1), calculate the SPE DAC that corresponds to SPE_DISCRIMINATOR_UVOLT (see Note on SPE/MPE DAC at the end of this document) and program it.

D. Take one waveform for the ATWD_CHIP_A_OR_B/ATWD_CHANNEL channel requested.

E. Repeat from step D, LOOP_COUNT times, keeping a waveform that is the sum of all.

F. Divide the resulting sum waveform by LOOP_COUNT to get an average waveform.

G. If FILL_OUTPUT_ARRAYS=1, fill the output array with the average pedestal waveform.

H. Analyze average pedestal waveform:

· Obtain maximum and minimum value of the average pedestal waveform.

· Set TEST_PASS_NOPASS to pass value if ALL of the following are true

· Minimum value of average pedestal waveform > 0

· Maximum value of average pedestal waveform < 1023

· Maximum-Minimum < 20 (check with Martin’s criteria)
I. Fill the ATWD_PEDESTAL_AMPLITUDE output variable with the value of
 Maximum-Minimum from the previous step.

7.2 Baseline test

In this test a number of waveforms from an ATWD chip/channel are collected. For each waveform an average baseline value is calculated using all the samples. The ATWD capture can be launched by either forcing it or by setting the SPE discriminator level within the noise band. The average baseline values are used to fill a histogram of this quantity that can be output on request. The mean, standard deviation and max & min of the set of average baseline values are calculated. These calculated values are used to define a pass/no-pass criterion.

	Name of Variable
	Description
	InputOutput & Type
	Default & Range

	ATWD_CONV_SPEED_DAC
	DAC setting (of a 12 Bit device) for ATWD sampling speed
	Input

Unsigned Integer
	2000 [0-4095]

	ATWD_RAMP_TOP_DAC
	DAC setting (of a 12 Bit device) for ATWD Ramp Top Voltage
	Input

Unsigned Integer
	2400 [0-4095]

	ATWD_RAMP_BIAS_DAC

	DAC setting (of a 12 Bit device) for ATWD Ramp Bias current
	Input

Unsigned Integer
	350 [0-4095]

	ATWD_ANALOG_REF_DAC

	DAC setting (of a 12 Bit device) for ATWD Analog Reference Voltage
	Input

Unsigned Integer
	2300 [0-4095]

	ATWD_PEDESTAL_DAC
	DAC setting (of a 12 Bit device) for ATWD Pedestal Voltage
	Input

Unsigned Integer
	2200 [0-4095]

	ATWD_CHIP_A_OR_B

	Selects one of two chips (A or B) on the board:0=ATWD-A and 1=ATWD-B
	Input

Boolean
	0 [0,1]

	ATWD_CHANNEL

	Selects one of 3 PMT analog signal channels with different gains
	Input

Unsigned Integer
	0 [0,1,2]

	ATWD_TRIG_FORCED_OR_SPE

	Selects ATWD launch method: 0=forced trigger, 1=SPE discriminator trigger
	Input

Boolean
	0 [0,1]

	SPE_DISCRIMINATOR_UVOLT

	SPE discriminator in microvolts (at the PMT input). 5000 = 5mV ~ 1 SPE
	Input

Signed Short
	0

[-5,000 - 5,000]

	LOOP_COUNT
	Number of waveforms for baseline histogram and to compute mean, rms, etc
	Input Generic

Unsigned Long
	1000 [0-1,000,000]

	FILL_OUTPUT_ARRAYS

	Fill up the output array with histogram of baseline. 0=do-not-fill, 1=fill-array
	Input Generic

Boolean
	1 [0,1]

	TEST_PASS_NOPASS
	Mean, standard deviation and max & min pass or not the criteria
	Output Generic

Boolean
	

	ATWD_BASELINE_MEAN

	Mean of the baseline values
	Output

Unsigned Short
	

	ATWD_BASELINE_RMS

	Standard deviation of the baseline values
	Output

Unsigned Short
	

	ATWD_BASELINE_MIN

	Minimum of the baseline values
	Output

Unsigned Short
	

	ATWD_BASELINE_MAX

	Maximum of the baseline values
	Output

Unsigned Short
	

	ATWD_BASELINE_HISTOGRAM

	Histogram of waveform baseline values in ATWD counts units.
	Output (if arrays)

Unsigned Integer Array[1024]
	

The test proceeds as follows:

A. All five ATWD DAC settings are programmed.

B. The ATWD trigger mask is written according to ATWD_TRIG_FORCED_OR_SPE.

C. If the SPE trigger was requested (ATWD_TRIG_FORCED_OR_SPE=1), calculate the SPE DAC that corresponds to SPE_DISCRIMINATOR_UVOLT (see Note on SPE/MPE DAC at the end of this document) and program it.

D. Take one waveform for the ATWD_CHIP_A_OR_B/ATWD_CHANNEL channel requested.

E. Calculate the “baseline” value: sum all samples and divide by the number of samples (128). Integer arithmetic is fine.

F. Enter the value in the histogram of baseline values (it is a 1024-bins histogram).

G. Keep a sum of all baseline values, and a sum of the squares for RMS calculation. Also keep the minimum and maximum value.

J. Repeat from step D, LOOP_COUNT times.

K. If FILL_OUTPUT_ARRAYS=1, fill the output array with the histogram of baseline values.

H. Compute the mean and the RMS using the running sums (integer arithmetic is ok).

I. Fill output variables ATWD_BASELINE_MEAN, ATWD_BASELINE_RMS, ATWD_BASELINE_MIN, ATWD_BASELINE_MAX.

J. Set TEST_PASS_NOPASS to pass value if ALL of the following are true:

· ??? < ATWD_BASELINE_MEAN < ??? NEED CALCULATION OF LEVELS(WHICH DEPEND ON CHANNEL NUMBER/GAIN)

· ATWD_BASELINE_RMS < ???
· ATWD_BASELINE_MIN > ???
· ATWD_BASELINE_MAX < ???
7.3 Amplitude Response

7.4 Pedestal Sweep

7.5 Cross-talk between slow control functions and ATWD PMT signal channels

7.6 Previous waveform memory

8. Fast ADC (FADC) test

9. Pressure Gauge test (work in progress… need to add ADC 5V readout and translation and limits with/out temperature reading)

In this test the ADC channel corresponding to the pressure gauge is read out multiple times and the mean, spread, maximum and minimum are compared to expectations to define a pass-no pass criteria. Whether the DOMMB is in a sphere and whether it is cold or not will influence the pressure reading.

Previous relevant tests: None

Required functionality:

· Read all ADC channels (8 channels of CS0 currently used in Jan 03 version board)

· If the USE_TEMPERATURE option is used requires the ability to read the on-board temperature gauge.

	Name of Variable
	Description
	InputOutput & Type
	Default & Range

	DOM_SEALED
	Set to 1 if board is sealed (underpressured) in sphere. 0 = open.
	Input

Boolean
	0 [0,1]

	USE_TEMPERATURE
	To choose if temperature gauge reading is used in pass criteria. 0=do-not-use
	Input

Boolean
	0 [0,1]

	LOOP_COUNT
	Number of ADC values to acquire to compute a mean and spread
	Input Generic

Unsigned Long
	1000 [0-1,000,000]

	TEST_PASS_NOPASS
	ADC values for this channel pass or not the test criteria
	Output Generic

Boolean
	

	ADC_MEAN_COUNTS

	Mean of the ADC values distribution in count units
	Output

Unsigned Short
	

	ADC_RMS_COUNTS

	Spread of the ADC values distribution in count units
	Output

Unsigned Short
	

	ADC_MAX_COUNTS
	Maximum ADC value read in count units
	Output

Unsigned Short
	

	ADC_MIN_COUNTS

	Minimum ADC value read in count units
	Output

Unsigned Short
	

	ADC_MEAN_KPASCAL

	Mean of the ADC values distribution in kiloPascal units
	Output

Unsigned Short
	

	ADC_RMS_ KPASCAL
	Spread of the ADC values distribution in kiloPascal units
	Output

Unsigned Short
	

	ADC_MAX_ KPASCAL
	Maximum ADC value read in kiloPascal units
	Output

Unsigned Short
	

	ADC_MIN_ KPASCAL

	Minimum ADC value read in kiloPascal units
	Output

Unsigned Short
	

The test proceeds as follows:

A. Perform LOOP_COUNT readouts of the ADC corresponding to the pressure gauge and of the ADC corresponding to the 5V power supply (calculate the mean ADC_MEAN_COUNTS (keeping the running sum in a Unsigned Long and dividing by LOOP_COUNT at the end).

B. Perform additional LOOP_COUNT readouts of the same ADC and save the maximum and minimum values in ADC_MAX_COUNTS and ADC_MIN_COUNTS. Also calculate the standard deviation using the previously calculated ADC_MEAN_COUNTS: ADC_RMS_COUNTS =

sqrt(1/(LOOP_COUNT-1) * Sum{(ADCj - ADC_MEAN_COUNTS)2}

C. Translate the mean, standard deviation and min & max from “counts” to kiloPascal units using the translation below and fill the corresponding output variables:

ADC_XXX_ KPASCAL = ADC_XXX_ COUNTS / 2
D. If USE_TEMPERATURE was set to 1, get a reading of the temperature (Units? Need to wait until I implemented the temperature test)

E. Define a pass/no-pass criteria and set TEST_PASS_NOPASS accordingly. Use the following table to determine the limits on the different output variables (pass is the logical AND of all the conditions for a given channel):

10. Temperature Sensor test

11. Analog Signal Noise test

12. Pulser tests

A series of important tests are to be performed with the pulser that injects PMT-like signals before the delay line and discriminator circuitry. The pulse amplitude is controlled by a DAC and it is fired by the FPGA. The pulse shape is determined by the hardware.

Required Functionality:

1. DAC: correct voltage output (see DAC test).

2. Pulser: correct voltage output, shape and linearity as a function of DAC setting.

3. FPGA: ability to continuously generate pulses at repetition rate of ~1kHz. (A selectable repetition rate in the 100Hz-100kHz range would be desirable, with a default to ~1kHz if not explicitly set.)

12.1 Pulser SPE/MPE discriminator test (Need to be reformatted with style of newest tests)

Required Functionality:

FPGA: SPE/MPE discriminator counters. The counting gate should be about one second (preferably exactly one second). The discriminator should be allowed to fire again only after ~5 microseconds. (A selectable “dead-time” would be desirable, which defaults to ~5 microseconds if not set.)

Inputs:

1. Pulse height in MICROVOLTS (at the PMT input). Unsigned Long. Default = 1000 (= 1mV ~ 0.2 SPE)

2. Discriminator level in MICROVOLTS (“defined” at the PMT input). Signed Long. Default = 500 (= 0.5 mV ~ 0.1 SPE)

3. SPE or MPE discriminator. Boolean (0 = SPE, 1=MPE). Default = 0 (SPE).

4. Pedestal level in MICROVOLTS. Unsigned Long. Default = 3,000,000 (=3V)

5. Pulser repetition rate in Hz. Unsigned Integer. Default = 0 (this should choose the FPGA default of ~1kHz).

6. Maximum rate deviation (absolute value) from expected value in Hz. Unsigned Integer. Default = 10.

The test proceeds as follows:

1. The amplitude of the pulses is used to calculate the value of the PULSER DAC.

2. The PULSER DAC is programmed with the target value calculated in the previous step.

3. The PEDESTAL DAC is calculated from the input Pedestal value.

4. The PEDESTAL DAC is programmed to the value from the previous step.

5. The discriminator level is used to calculate the discriminator SPE/MPE DAC.

6. The SPE/MPE DAC is programmed with the target value from the previous step.

7. The pulser is set to fire at the nominal ~1kHz rate (or different rate if Pulser repetition rate is given).

8. The SPE/MPE counter is read; this step involves starting the counter and reading-out the value after the counting gate is finished.

9. Check whether the rate from the SPE/MPE counter is consistent with expectations; decide pass/no-pass.

10. Turn off pulser (This depends on whether subsequent tests are run from clean or not).

A single parameter is used to determine pass/no pass criteria: an absolute deviation from the nominal expected rate. That is, for values of the pulser amplitude larger than the threshold the rate should be consistent the full rate (in the default case in the [990-1010] Hz range) . For values of the pulser smaller than the threshold the rate should be consistent with zero rate ([0-10] Hz in the default case).

Outputs:

1. The measured rate in Hz. Unsigned Long.

2. Test Pass/No-Pass. Boolean.

Notes on DAC settings, reference voltage, SPE amplitude and discriminator settings:

1. A 10-bit DAC channel sets the pulser amplitude level. Its range is [0-5V], or 4.88 mV/LSB. To compute the PULSER DAC use : PULSER DAC = Pulse_in_microvolts * 1024 * (R1+R2) / R2 / 5,000,000

 [where R1 and R2 are still not determined but should be around (R1+R2) / R2 = 10 to cover the 0.1-100 SPE range]

2. A 12-bit DAC channel sets the value of the pedestal. Its range is [0-5V]. The value is chosen to provide the ATWD with its ~3V target Vref. To compute the PEDESTAL DAC use: PEDESTAL DAC = Pedestal_in_microvolts * 4096 / 5,000,000 (is this a problem for LONGS, or should I think in float calculation?).

3. The nominal magnitude of a single photoelectron pulse out of the transformer is 5mV (mean). Before the discriminators there is a gain of ~9.6. Therefore the amplitude is ~48 mV (mean) for the SPE at the discriminator.

4. A 10-bit DAC channel sets the SPE/MPE discriminator level. Its range is [0-5V], or 1.22 mV/LSB.

To calculate the SPE DAC use: SPE DAC = (Discriminator_in_microvolts * 9.6 * (2200+1000)/1000 + PEDESTAL DAC * 5,000,000 /4096) *1024 / 5,000,000.

To calculate the MPE DAC use: MPE DAC = (Discriminator_in_microvolts * 9.6 + PEDESTAL DAC * 5,000,000 /4096) *1024 / 5,000,000.

12.2 Pulser SPE/MPE discriminator scan test (Need to be reformatted with style of newest tests)

In this test the pulser is set to some amplitude and the SPE/MPE discriminator is scan and the rate at each point is recorded. It is NOT a pass/no-pass test, but the results should be recorded to a database.

Required Functionality:

FPGA: SPE/MPE discriminator counters. The counting gate should be about one second (preferably exactly one second). The discriminator should be allowed to fire again only after ~5 microseconds. (A selectable “dead-time” would be desirable, which defaults to ~5 microseconds if not set.)

Inputs:

1. Pulse height in MICROVOLTS (at the PMT input). Unsigned Long. Default = 1000 (= 1mV ~ 0.2 SPE)

2. Lower value of Discriminator level to scan in MICROVOLTS (“defined” at the PMT input). Signed Long. Default = -1000 (= -1.0 mV ~ -0.2 SPE).

3. Upper value of Discriminator level to scan in MICROVOLTS (“defined” at the PMT input). Signed Long. Default = 2000 (= 2.0 mV ~ -0.4 SPE).

4. Step size of scan in MICROVOLTS (“defined” at the PMT input). Unsigned Long. Default = 0 (when this value is zero the steps are single DAC setting steps).

5. SPE or MPE discriminator. Boolean (0 = SPE, 1=MPE). Default = 0 (SPE).

6. Pedestal level in MICROVOLTS. Unsigned Long. Default = 3,000,000 (=3V)

7. Pulser repetition rate in Hz. Unsigned Integer. Default = 0 (this should choose the FPGA default of ~1kHz).

The test proceeds as follows:

1. The amplitude of the pulses is used to calculate the value of the PULSER DAC.

2. The PULSER DAC is programmed with the target value calculated in the previous step.

3. The PEDESTAL DAC is calculated from the input Pedestal value.

4. The PEDESTAL DAC is programmed to the value from the previous step.

5. The pulser is set to fire at the nominal ~1kHz rate (or different rate if Pulser repetition rate is given).

6. A loop over the discriminator levels between Lower and Upper with the step size requested (for the default values this should scan over ~20 interesting points in the electronic noise and true discriminator region, which should take about 20 seconds). At each point, the following three steps are executed:

7. Calculate the discriminator SPE/MPE DAC.

8. The SPE/MPE DAC is programmed with the target value from the previous step.

9. The SPE/MPE counter is read; this step involves starting the counter and reading-out the value after the counting gate is finished.

10. Turn off pulser (This depends on whether subsequent tests are run from clean or not).

Outputs:

1. An array of measured rates in Hz. Array of Unsigned Long (maximum length 1024 if code protects against step size smaller that DAC granularity).

12.3 Pulser ATWD0/1/2 test

In this test the pulser is set to fire at the nominal rate. A waveform for a given chip/channel is taken. If the pedestal-subtracted option is requested, a waveform is taken with the pulser amplitude set to zero, and it is subtracted from the first waveform. A number of these (sometimes pedestal subtracted) waveforms are averaged. The resulting average waveform (pedestal subtracted if requested) is analyzed to check if it has the expected pulse width, height and baseline. The assumption is that the values for the ATWD DAC settings have been correctly set for this “lot” of ATWDs. Therefore, the variations in sampling speed and gain (and hopefully also baseline, in the case of non-pedestal subtracted) are small between chips and therefore a pass no pass can be defined. This test checks also the input amplifiers to the various ATWD channels.

Previous relevant tests:

(These will be specified as one of the tests in this list –with specific input parameters-)
· ATWD Sampling speed test

· ATWD Pedestal/baseline test

· DAC setting

· Others?

Required functionality:

(Some of these could be replaced by having passed the relevant previous tests)

· Set all ATWD-related DACs for both ATWD chips.

· FPGA: Launch ATWD synchronously on pulse generation (with tunable delay in 2x clocks, defaulting to a delay similar to Delay line, if zero it should mean that the pulser fires 4 clock cycles before the ATWD).

· FPGA: read out ATWD waveforms.

	Name of Variable
	Description
	InputOutput & Type
	Default & Range

	ATWD_CONV_SPEED_DAC
	DAC setting (of a 12 Bit device) for ATWD sampling speed
	Input

Unsigned Integer
	2000 [0-4095]

	ATWD_RAMP_TOP_DAC
	DAC setting (of a 12 Bit device) for ATWD Ramp Top Voltage
	Input

Unsigned Integer
	2400 [0-4095]

	ATWD_RAMP_BIAS_DAC

	DAC setting (of a 12 Bit device) for ATWD Ramp Bias current
	Input

Unsigned Integer
	350 [0-4095]

	ATWD_ANALOG_REF_DAC

	DAC setting (of a 12 Bit device) for ATWD Analog Reference Voltage
	Input

Unsigned Integer
	2300 [0-4095]

	ATWD_PEDESTAL_DAC
	DAC setting (of a 12 Bit device) for ATWD Pedestal Voltage
	Input

Unsigned Integer
	2200 [0-4095]

	ATWD_CHIP_A_OR_B

	Selects one of two chips (A or B) on the board:0=ATWD-A and 1=ATWD-B
	Input

Boolean
	0 [0,1]

	ATWD_CHANNEL

	Selects one of 3 PMT analog signal channels with different gains
	Input

Unsigned Integer
	0 [0,1,2]

	PULSER_AMPLITUDE_UVOLT
	Pulser Amplitude in microvolts (at the PMT input). 5000 = 5mV ~ 1 SPE
	Input

Unsigned Long
	5000

[0-5,000,000]

	PEDESTAL_SUBTRACTION
	Subtract pedestal waveform before analyzing. Subtract =1; Not-subtract =0
	Input

Boolean
	1 [0,1]

	PULSE_DELAY_WRT_LAUNCH

	Location of pulse within waveform: 2x clock cycles delay. A value of 0 is a pulse generated when ATWD launches.
	Input

Integer
	1 [-255-255]

	LOOP_COUNT
	Number of waveforms to take and average over before analysis
	Input Generic

Unsigned Long
	1000 [0-1,000,000]

	TEST_PASS_NOPASS
	Average waveform passes or not the criteria (gain, ?)
	Output Generic

Boolean
	

	ATWD_WAVEFORM_BASELINE

	Waveform baseline in ATWD counts units.
	Output

Signed Integer
	

	ATWD_WAVEFORM_WIDTH

	Pulse width in ATWD samples units.
	Output

Unsigned Integer
	

	ATWD_WAVEFORM_HEIGHT

	Pulse height (max point – baseline) in ATWD counts units.
	Output

Signed Integer
	

	ATWD_WAVEFORM_POSITION

	Pulse peak position in ATWD samples units.
	Output

Unsigned Integer
	

The test proceeds as follows:

L. All five ATWD DAC settings are programmed.

M. Set the trigger masks to trigger synchronously to the pulse generation (modulo delay).

N. Set the pulse delay from the PULSE_DELAY_WRT_LAUNCH input.

O. Set the pulser repetition rate to the default value (writing a zero to the corresponding register).

P. If pedestal subtraction is requested set the pulser height to zero microvolts.

Q. If pedestal subtraction is requested, take one waveform for the ATWD_CHIP_A_OR_B/ ATWD_CHANNEL channel requested.

R. The PULSER_AMPLITUDE_UVOLT input is used to calculate the value of the PULSER DAC [need engineer’s input].
S. The PULSER DAC is programmed with the target value calculated in the previous step.

T. Take one waveform for the ATWD_CHIP_A_OR_B/ ATWD_CHANNEL channel requested.

U. If pedestal subtraction is requested, subtract the first wave from the second (result is Signed).

V. Repeat from step E, LOOP_COUNT times, keeping a waveform that is the sum of all.

W. Turn off pulser.

X. Divide the resulting sum waveform by LOOP_COUNT to get an average waveform.

Y. Perform analysis on waveform to determine baseline, width, height and position.

· To calculate the baseline, make three separate averages of samples [60-79], [80-99] and [100-119] and pick the smallest of the three as the ATWD_WAVEFORM_BASELINE value.

· Find the position ATWD_WAVEFORM_POSITION and value of the waveform maximum point.

· Calculate the ATWD_WAVEFORM_HEIGHT subtracting the baseline from the maximum amplitude.

· Calculate the ATWD_WAVEFORM_WIDTH (basically a FWHM) by going to the left and right of the maximum amplitude position and finding the first sample that is smaller or equal half of the pulse height (plus the baseline). Subtract the left position from the right position.

Z. Check if the four values calculated in the previous step agree with expectations and set TEST_PASS_NOPASS accordingly if ALL passed.

· The expected ATWD_WAVEFORM_HEIGHT depends on the ATWD channel (gain). Assuming that ~2Volts is the entire ATWD range [0-1023] and that the gains are 8 counts/mV, 2 counts/mV and 0.3333 counts/mV for Channel 0, 1 and 2 respectively. For instance if we have PULSER_AMPLITUDE_UVOLT at 5000 and we are looking at channel 1 of the ATWD, we expect a height of 5000 * 2 mV/count / 1000 = 10 counts. The measured height should be within 20% of the expected height.

· The expected ATWD_WAVEFORM_BASELINE depends on whether pedestal subtraction was requested. If pedestal subtraction was requested, the value should be close to zero. If it was not requested, the value would depend on the gain and pedestal/analog reference settings. Therefore the condition will be limited to: If pedestal subtraction was requested, the ATWD_WAVEFORM_BASELINE should be consistent with zero to within 2 counts.

· The expected ATWD_WAVEFORM_WIDTH depends on the true pulse width as determined from the time constants on the hardware components, the sampling speed and the bandwidth of the amplifiers. The result should be independent of all other setting and of the channel being used. The measured ATWD_WAVEFORM_WIDTH should be within one sample of the expected width [this expected value needs to be filled in by the engineers or from initial oscilloscope pulser tests, but the 3.333 nsec/sample should be used as a fixed input parameter].
· The expected ATWD_WAVEFORM_POSITION depends on the timing of pulser circuitry, the electrical length of the delay line, the sampling speed, the FPGA related delays and the requested delay between pulse and launch/trigger. The measured ATWD_WAVEFORM_POSITION should be within three samples of the expected value [this expected value needs to be filled in by the engineers or from initial measurements but it should assume 3.333 nsec/sample and discrete additional delays from PULSE_DELAY_WRT_LAUNCH of 25 nsecs/unit].
12.4 Pulser ATWD0/1/2 previous pulse memory test

12.5 Into FADC

12.6 Pulser ATWD inter-channel cross-talk test

12.7 Pulser “SPE” spectrum with discriminator?

13 PMT Coupling tests

14 Multiplexer to ATWD channel-3 tests

14.1
Clock sinusoidal wave (sampling speed)

14.2
Clock square 2x (sampling speed)

14.3
Voltage on On-board LED

14.4
Voltage from Flasher Board Interface

14.5
Local Coincidence Signal from Upper DOM

14.6
Local Coincidence Signal from Lower DOM

14.7
Signal from Communications Input Amplifier

14.8
Pulser Signal before Delay Line

14.9
Clock square 2x ATWD inter-channel cross-talk test

15 Communications test

16 Local Coincidence Hardware test

17 Clock Stability test

18 Communications ADC Noise test

19 Power Consumption test

20 Memory tests

21 Single Photoelectron Spectrum test

22 Cross-talk within board tests

22.2
Communications signals into PMT signal path cross-talk test

22.2.1 Transmitted signals

22.2.2 Received signals

22.3
On-board LED electrical pulsing into PMT signal path cross-talk test

22.4
Flasher board electrical pulsing into PMT signal path cross-talk test

22.5
Local coincidence signals into PMT signal path cross-talk test

22.6
PMT signal into communications signal path cross-talk test

22.7
Pulser signal into communications signal path cross-talk test

22.8
On-board LED electrical pulsing into communications signal path cross-talk test

22.9
Flasher board electrical pulsing communications signal path cross-talk test

22.10 Local coincidence signals into communications signal path cross-talk test

22.11 Reading ADCs and pressure and temperature into PMT signal path cross-talk test

22.12 Reading ADCs and pressure and temperature into communications signal path cross-talk test

23 Two-DOM tests

23.2 Communications cross-talk

Notes:

Pulser DAC:

A 10-bit DAC channel sets the pulser amplitude level. Its range is [0-5V], or 4.88 mV/LSB. To compute the PULSER DAC use : PULSER DAC = Pulse_in_microvolts * 1024 * (R1+R2) / R2 / 5,000,000

 [where R1 and R2 are still not determined but should be around (R1+R2) / R2 = 10 to cover the 0.1-100 SPE range]

Pedestal DAC:

A 12-bit DAC channel sets the value of the pedestal. Its range is [0-5V]. The value is chosen to provide the ATWD with its ~3V target Vref. To compute the PEDESTAL DAC use: PEDESTAL DAC = Pedestal_in_microvolts * 4096 / 5,000,000 (is this a problem for LONGS, or should I think in float calculation?).

ADCs:

The ADC (eight-channel unit) is a 12-Bit (0-4095) unit with an input range of 2.048 Volts.

PE amplitude:

The nominal magnitude of a single photoelectron pulse out of the transformer is 5mV (mean). Before the discriminators there is a gain of ~9.6. Therefore the amplitude is ~48 mV (mean) for the SPE at the discriminator.

SPE/MPE DAC:

A 10-bit DAC channel sets the SPE/MPE discriminator level. Its range is [0-5V], or 1.22 mV/LSB. To calculate the SPE DAC use:

SPE DAC =

(Discriminator_in_microvolts * 9.6 * (2200+1000)/1000 + PEDESTAL DAC * 5,000,000 /4096) *1024 / 5,000,000.

To calculate the MPE DAC use:

MPE DAC = (Discriminator_in_microvolts * 9.6 + PEDESTAL DAC * 5,000,000 /4096) *1024 / 5,000,000.

Gains in the ATWD0,1,2 amplifiers:

As of Jan 28 2003

ATWD0 has x2x4.4

ATWD1 has 4.333333

ATWD2 has x2/3

ATWD3

ADC 1x4.88x4.88

Basic Test Sequence

