
Tyce DeYoung
University of Maryland

October 8, 2004

Programming for IceTray

IceCube Collaboration Meeting
Uppsala, Sweden

October 8, 2004IceCube Uppsala Meeting

Preface

• We have collaborators with a wide variety
of backgrounds
– Talk is written for people with a C/Siegmund

background

• Techniques, technology, design described are
the product of many people, especially:
– Troy Straszheim
– John Pretz
– Simon Patton
– Erik Blaufuss

October 8, 2004IceCube Uppsala Meeting

What’s He Talking About?

• What you need to know to write IceTray
modules
– We’re not going to implement everything for you!

• IceCube coding style
– C++, Root, STL, Smart Pointers

• Basics of IceTray
– Where do I put my code?

• Why are we doing it this way?
– It’s not just to make your life harder. Really.

October 8, 2004IceCube Uppsala Meeting

Coding Techniques

• Our software is a blend of many things:
– “old-style” C++
– Root
– Standard Template Library (STL)
– New developments (e.g., boost project)

• Want to use best practices from computer science,
still interact with Root

• Want to be able to use software in a distributed,
threaded, or GRID environment

• Need to follow some conventions which may be
new to you

October 8, 2004IceCube Uppsala Meeting

Containers

• C used arrays
– Not extensible
– Had to keep track of size, not read past end
– Elements identified only by consecutive, non-

negative integer

• We use STL containers
– Similar to Root containers, wider user base
– Hidden behind “policy” – can be changed later
– Vectors
– Maps
– Multimaps

October 8, 2004IceCube Uppsala Meeting

Vectors

• Like C arrays
– Contents indexed by consecutive integer

• Don’t need to declare size ahead of time
• Template: can have a vector of anything

– vector<int>, vector<I3RecoHit>

– Use VectorPolicy<Type>, not vector<>

• STL uses stack terminology
– push_back()
– pop_front(), pop_back()
– resize()

October 8, 2004IceCube Uppsala Meeting

Maps

• Container of named (‘keyed’) elements
• STL uses array-like notation

– Constants[“Pi”] = 3.1415926;

• Our policy classes also provide a “physics-y”
interface
– Constants.Add(“Euler”, 2.7182818);
– Insert()
– Get()
– Find()

October 8, 2004IceCube Uppsala Meeting

Multimaps

• Like maps, but key need not be unique

• Used for identifying groups of objects
– A bit like several vectors pasted together
– Can be looped over all together or by section

• Used in Monte Carlo particle lists,
composite tracks, etc.

October 8, 2004IceCube Uppsala Meeting

Iterators

• Can use plain old integer index for vector
for(Int_t i=0; i<vect.size(); i++) {}

• Doesn’t work for maps, though!
– Know what the next integer is, but what’s the

“next name”?

• Containers have associated objects called
“iterators”
– I3RecoHitSeries::iterator iter;
– I3DataReadoutDict::iterator iter;

…and so forth

October 8, 2004IceCube Uppsala Meeting

Looping with Iterators

• Very similar to a regular for loop
for (iter = container.begin();

iter != container.end();
iter++) {…}

• Ask the container where it begins and ends
– Can also set the beginning and end manually

• The container’s iterator knows how to find
the “next element”

• For nested loops, need separate iterators!

October 8, 2004IceCube Uppsala Meeting

Iterating over Maps

• Iterator is a pointer to a container element

• Vector: element is the data

• Map/Multimap: element is not data itself,
but rather pair<key,data>
– Iterator is pointer to pair<key,data>

• Need to use pair<> methods
– iter->first() gives you the key
– iter->second() gives you the actual data

October 8, 2004IceCube Uppsala Meeting

Selectors

• Selections of some objects in a list are done
with “selectors”, basically iterators with logic

• Use exactly like iterators, except:
– Get them from the event, rather than declaring them
– Need to call SetLimit(container.end());

before doing your loop
– Call GetCopy() to obtain an identical second

iterator (for nested loops, etc.)

• Currently only I3OMSlr, others can be added
quickly (I3HitSlr, I3TrackSlr)

October 8, 2004IceCube Uppsala Meeting

Smart Pointers

• Automatic deletion of dynamically allocated
(“heap”) objects when no one is using them

• Prevents memory leaks (a very hard bug to
find!)

• Call new all you like, don’t ever delete
– like malloc without free

• Implemented by Troy Straszheim, based on
boost template library

October 8, 2004IceCube Uppsala Meeting

Using Smart Pointers

• Instead of something*, use somethingPtr

• Don’t use with stack variables
– Probably want to use a reference, anyway
– Anything in the event is a heap variable – OK

• Automatically point to NULL when uninitialized
– Return kFALSE in a boolean test: if (!ptr){…}

• Initialize by assignment to existing pointer:
SmartPtr ptr = old_ptr;

or to a new object by passing as a parameter:
SmartPtr ptr(new Smart);

October 8, 2004IceCube Uppsala Meeting

Inheritance

• C++ allows classes to inherit from each other
class derived : public base {...};

• Models “is a” (“is a specific type of”)
relationship
– Dog “is a” Mammal
– Terrier “is a” Dog, which in turn “is a” Mammal

• Used in many places in dataclasses
– selector is a(n) iterator
– LineFitTrack is a BasicTrack
– JAMSRecoResult is a RecoResult

October 8, 2004IceCube Uppsala Meeting

Inheritance, cont’d

• Inheritance allows you to add functionality

I3LineFitTrack adds velocity parameters to
I3BasicTrack (not literal velocity)

I3OMSlr adds IsSelected() to iterator

• Can also override default functionality

I3OMSlr always returns kTRUE when
IsSelected() is called

I3OMSlrList checks a list of ‘good OMs’, then
returns either kTRUE or kFALSE

October 8, 2004IceCube Uppsala Meeting

What is That Object?

• Ambiguity in knowing what an object is

• You know it’s a green ball, but I only know
it’s a ball (I’m colorblind)
– Actually, it’s a hollow green rubber ball!

• A C++ object has one fixed type, but it can
be viewed and referred to as being any type
from which it inherits (via a ‘pointer to X’)

• basePtr can point to a derived object
– Only methods of base class are available

October 8, 2004IceCube Uppsala Meeting

No, It’s Really a ____!

• Containers in the event usually know only
general information about their contents
– RecoResultDict only know that it has
RecoResults of some sort, not that some are
JAMSRecoResults or
RecoResultSingleTracks

• Need to cast the object to access extra
methods, variables (if you want them)
– You know that the result named “Pole FG” was

added by the Linefit and contains a
LineFitTrack, need to tell the compiler

October 8, 2004IceCube Uppsala Meeting

To Cast or Not to Cast

• If you don’t want access to the extra stuff,
don’t bother to cast

– Get the zenith angle from a track without knowing
whether it’s a LineFitTrack or a MCTrack or a
PandelLikelihoodTrack

– Use an I3OMSlrList without knowing what it
really is, just that it’s some type of I3OMSlr

– Find the OM geometry without knowing whether
it’s an IceCube or AMANDA OM

• Expect that in most cases, casting not required

October 8, 2004IceCube Uppsala Meeting

Casting 101

• If you want access to the unique variables, cast
– Old C style was (float) myInt;

– C++ standard is (for what we’re doing)
dynamic_cast<Type>(object);

– For smart pointers, replace with
dynamic_pointer_cast<Type>(object);

• If you cast the object to an invalid type, the
resultant pointer will be NULL
– Check with (!myPtr)

October 8, 2004IceCube Uppsala Meeting

Event Data Structure

• Each data “stream” has a top level object
– I3Event
– I3Geometry

…and so forth

• Information in that stream is basically in a
hierarchy of nested containers

• See http://glacier.lbl.gov/offline/
dataclasses/index.html for details

October 8, 2004IceCube Uppsala Meeting

Part II

IceTray Basics for
Developers

October 8, 2004IceCube Uppsala Meeting

Software “Framework”

• Framework handles the basics for you
– I/O, utilities, flow of control, logging, getting and

parsing configuration parameters, etc.
– Replaces main() and the preliminaries

• What’s the benefit?
– Allows you to focus on specific task

– Modularity (maintainability!)

– Easier to steal code, extend applications

– Reliability (core functions in common, well-
exercised code)

– Common style, shorter learning curve

October 8, 2004IceCube Uppsala Meeting

Analysis Containers

• Each IceTray module is isolated from larger
environment, in its own “container”

• Interactions limited to requests for services,
events, configuration, logging and errors

• All services, etc. provided by IceTray through
a “context” object – switchable

• Module appears to have own flow of control

• Lends itself to threads, distributed processing,
specialized environments like Pole

October 8, 2004IceCube Uppsala Meeting

IceTray Modules

• Each module has one or more Inboxes and Outboxes
(Except Source modules, which have no Inbox)

• Module receives events in an Inbox, processes them
and places them in one or more Outboxes

• One Inbox is ‘active’ → drives execution

• Events can be requested from the ‘passive’ Inboxes
– Not available in current version of IceTray

• User defines application topologically at configure
time, arbitrary† complexity based on module logic

†Almost – no turning around (Directed Acyclic Graph)

October 8, 2004IceCube Uppsala Meeting

Building an Application

• Context of inboxes, outboxes is created by user
through configuration file, not by developer

October 8, 2004IceCube Uppsala Meeting

Interlude on the Data Model

• IceCube data is a series of “Frames”
• Frame contains all available information:

Geometry, Calibration, Physics Events, etc.
• These are referred to as the data “streams”

October 8, 2004IceCube Uppsala Meeting

Frames and Streams

• Streams change on different time scales
– Physics Events change very quickly
– Calibration changes relatively infrequently
– Geometry changes very slowly

• Frame holds most recent record on each stream

October 8, 2004IceCube Uppsala Meeting

Stops

• In any new frame, there is exactly one
stream with a new record
– Usually Physics/Event stream

• That frame is said to be a ‘stop’ on that
stream – effectively the type of the frame

October 8, 2004IceCube Uppsala Meeting

Module Lifecycle

• Module is a “state
machine”
– All activity occurs in one

of these ‘transitions’
between states

• Process() is split up
by stream: Physics(),
Geometry(), etc.

• Default implementations are provided
transparently in an inherited base class
– Most modules need only implement Physics(),
Configure()

October 8, 2004IceCube Uppsala Meeting

Examples

• The examples-offline project contains
fairly well documented examples
– selector: for selecting which OMs to use
– linefit: port of the AMANDA routine
– sim-modules: several simulation tasks

• Part of the DATACLASS-APP metaproject

• Can provide a template for new modules,
illustrate programming techniques

October 8, 2004IceCube Uppsala Meeting

Lessons from CHEP

• Compared to other experiments, software is
quite simple, user friendly
– It could be much worse!

	Programming for IceTray
	Preface
	What’s He Talking About?
	Coding Techniques
	Containers
	Vectors
	Maps
	Multimaps
	Iterators
	Looping with Iterators
	Iterating over Maps
	Selectors
	Smart Pointers
	Using Smart Pointers
	Inheritance
	Inheritance, cont’d
	What is That Object?
	No, It’s Really a ____!
	To Cast or Not to Cast
	Casting 101
	Event Data Structure
	Software “Framework”
	Analysis Containers
	IceTray Modules
	Building an Application
	Interlude on the Data Model
	Frames and Streams
	Stops
	Module Lifecycle
	Examples
	Lessons from CHEP

