
ICECUBE
 DELTA COMPRESSOR DATA FORMAT AND PROCESSES

Version1.0

 Joshua Sopher
 jesopher@lbl.gov
 Lawrence Berkeley National Laboratory

July 26, 2005

1 Introduction

The delta compressor reads uncompressed data from a buffer containing fADC and ATWD data.
It processes and outputs a header and compressed data as long words for recording in the Look
Back Memory of the DOM Main Board. The delta are processed in subtractor and a width sizer.
The subtractor generates the signed delta, and the sizer formats data into words or nibbles.
Compressed data are packed as words and nibbles, and unpacked as long words for outputting.
The document describes these processes, with examples at each stage of processing. Examples of
how data are decompressed are also shown.
The document provides the necessary information for writing the de-compression code, software
for the DOM CPU to generate the full time stamp, and for testing compressed data in the Look
Back Memory of the DOM Main Board.

Data is recorded in DOM memory at 2k boundaries as follows:

2 Description Of The Header
Compressed data begins with a header, followed by compressed data.

2.1 Header Word Used By "Domapp" Only

WORD0: Compr flag D31 1 bit
Unused D30..D16 15 bits
Time Stamp
(16 m.s. bits) D15..0, D15 = msb 16 bits

2.2 Compression Header

WORD1: Compr flag D31 1 bit
Trigger Word D30..D18, D30 = msb 13 bits
LC D17..D16, D17 = msb 2 bits

fADC Avail D15 1 bit

Atwd Avail D14 1 bit
Atwd Size D13..D12, D13 = msb 2 bits
ATWD_AB D11 1 bit
Hit Size D10..D0, D10 = msb 11 bits

WORD2: Time Stamp
(32 l.s. bits) D31..D0, D31 = msb, 32 bits

WORD3: Peak Range D31 1 bit
Peak Sample D30..D27, D30 = msb, 4 bits
Pre-peak Count D26..D18, D26 = msb, 9 bits
Peak Count D17..D9, D17 = msb, 9 bits
PostPeak Count D8..D0, D8 = msb, 9 bits

Word0 is not part of the compressor header transmitted to the DAQ. It is described here for use
by DOM software. Compressed data transmitted to the DAQ begins with Word1.

2.3 Meaning Of Header Bits

Bits for word0.... word3 are described in this section.

2.3.1 Word0 (not transmitted to the DAQ with compressed data)

D31: Compressed/Uncompressed flag.
1 = compressed data
0 = uncompressed data.

This bit tells DOM software that the most significant 16 bits of the Time Stamp are contained in
Word0. The lower bits of the Time Stamp are contained in Word2. Software monitors when the
lower 32 bits roll over, and then transmits the full time stamp to the surface. (For more
information, refer to domapp API documentation at
http://www.npxdesigns.com/domapp/api.html).
D30..D16: Unused bits
D15..D0: Time Stamp(D47..D32). D15 is the msb. The highest 16 bits of the 48 bit "raw data" Time
Stamp are recorded.

2.3.2 Word1

D31: Compressed/Uncompressed flag.
1 = compressed data
0 = uncompressed data

This bit is used by the de-compressor on the surface to identify compressed data, so that it is
ALWAYS equal to 1 for compressed data.
D30 to D18 Compression Trigger Word.

The lower 13 bits of the 16 bit raw data Trigger Word.
D17, D16: LC (Local Coincidence)

D[17..16] = 01 LC tag came from below
D[17..16] = 10 LC tag came from above
D[17..16] = 11 LC tag came from below and above

D15: fADC Available
 1 = true, 0 = false. If false, Atwd Available will = 0.

D14: Atwd Available
 1 = true, 0 = false

D13, D12: Atwd Size: Number of Atwd channels.
D[13..12] = 00 ch0 only
D[13..12] = 01 ch0 and ch1
D[13..12] = 10 ch0, ch1, and ch1
D[13..12] = 11 ch0, ch1, ch2, and ch3

D11: ATWD_AB
1 = Atwd B
0 = Atwd A

D10 to D0: Hit Size.
This is the number of bytes in the hit, and includes the header. (Numbering starts from 1 not 0).
For example, if only the header (12 Bytes) is sent to the DAQ, then Hit Size in memory (Word1,
D10..0) = 000 0000 1100. The average hit size for tagged data (when there is local coincidence),
assuming three small pulses = 96.
It does not count the bytes of Word0, since they are not part of compression data sent to the DAQ.

2.3.3 Word2

D31 to D0 Compression Time Stamp. D31 is the msb. The lowest 32 bits of the 48 bit (full) Time
Stamp are used. Word2 roll-over occurs every 1.789 minutes.

2.3.4 Word3

D31: Peak Range
1 = Higher 9 bits
0 = Lower 9 bits

fADC data is 10 bits wide. Peak range. Pre-, post-, and peak counts use either the lower or the
upper 9 bits.
D30 to D27: Peak Sample (number)
This is the sample number of the peak count.
D26 to D18: Pre-peak Count
This is the count of the fADC output of the sample preceding the peak sample.
D17 to D9: Peak Count
This is the count of the fADC output of the peak sample.
D17 to D9: Post-peak Count
This is the count of the fADC output of the sample following the peak sample. If the peak does
not occur within the range of 0 to 15 samples, the post-peak count will exceed the peak count.

The de-compressor uses these parameters to keep track of the stream of data, and not lose its
place.
The hit size tells when you get to the end of a set of hit data.
Atwd Size is used to calculate the number of 128 10-bit words recorded per channel.
fADC Available is used to calculate if 256 fADC words are recorded.
If fADC data is not recorded, then ATWD data is also not recorded.

3 Compressed Data (Word4 … Wordn)

WORDn is given by the Hit size, as described above.
Data is obtained from different data sources (fADC, AWTD channels), depending on the various
flag values. For instance, if fADC Available = 0, only the header is recorded. If fADC Available =
1, and Atwd Available = 0, only the header and fADC data is recorded.
Compressed data is read out of memory in the following order.
fADC is first, AWTD Ch0 is next, followed by Ch1, Ch2, and Ch3.

4 Method Of Compression

The number of data sources such as fADC, ATWD ch0, etc, that are read out and processed is
given in the raw data header. For a description, see the section called "Raw Data Format Header"
in "DOMAPP firmware API document" by Thorsten Stezelberger.
Uncompressed data is a 10 bit word (count). The difference between two successive words is
calculated. For example, zero is subtracted from the first uncompressed data to provide the first
delta count plus the sign. The first uncompressed data is subtracted from the second count to give
the second signed delta count etc. The signed subtraction is 2s complement.
Read a data word from the buffer.
Subtract it from the previous data word (or zero for the first word of the fADC, Ch0, Ch1, Ch2,
and Ch3).

Save the signed difference (delta).
If -4 < delta < +4, then set the size flag to 1, otherwise set it to 0.
This gives two count sizes, big and small, and a flag to identify the size.
The big delta count is 10 bits, and the corresponding data is 12 bits as follows:
Bit 11 = sign bit
Bit 10 to Bit 1 = count data , with bit 10 = msb
Bit 0 = size bit = 1

The small delta count is 4 bits as follows:
Bit 3 = sign bit
Bit 2 to Bit 1 = count data , with bit 2 = msb
Bit 0 = size bit = 0

Big and small words are written into a register as they are generated. Words of a single size are
normally written into registers, so writing words of two different sizes (contiguously) requires
special handling. This done in a "ring register". The "ring register" also performs a function of
packing and unpacking data.
The ring register is a circular FIFO, with read and write pointers. These pointers control writing
words of two different sizes. They also ensure that words are always read out before being
overwritten. Compressed words are read out in a third size; words are partitioned in the FIFO
and outputted as a series of concatenated bytes. The bytes are further packed into long words,
suitable for writing into the look back memory of the DOM.
The first compressed byte is recorded as the most significant byte of the first long word (32 bits),
the next compressed byte is the next significant byte of the first long word, and so on. Thus the
compressed bytes in memory are a succession of bytes starting with the most significant byte and
continuing on to the following significant bytes in succession. The format is neither little or big
endian.

NOTE: The first delta word for each source is referenced to zero. For example, the first delta word
of ATWD ch0, is not referenced to the last uncompressed word of the fADC.

5 Method of Decompression

If we use the following as the first two words after the header (Word4 and Word5), in our
example:

Word4 = 23c100d6
Word5 = 0477d0fb

The bytes are as follows:
byte0 = 23,
byte1 = c1,
byte2 = 00,
byte3 = d6,
byte4 = 04,
byte5 = 77

The nibbles are as follows:
nibble0 = 3
nibble1 = 2
nibble2 = 1
nibble3 = c

nibble4 = 0
nibble5 = 0
nibble6 = 6
nibble7 = d
nibble8 = 4
nibble9 = 0
nibble10= 7 ...
......

These are processed as:
check bit0 of the first nibble (nibble0)
bit 0 = size bit = 1 therefore we have a 12 bit word
get 12 bits = nibble2, nibble1, nibble0
= 0001,0010,0011
msb (bit11) = sign bit = 0 therefore we have a positive (delta) number
bits 11 to 1 = 0001 0010 001 = +091 hex
this is the first delta value, starting from an initial default value of 0 hex.
therefore the decompressed 10 bit word = 091 hex

check bit0 of the next nibble (nibble3)
bit 0 = size bit = 0 therefore we have a 4 bit word
get 4 bits (of nibble3) =1100
msb (bit4) = sign bit = 1 therefore we have a negative (delta) number
(2's complement)
bit3,bit2,bit1 = 110 = -2 hex = ffe hex (11 bit word)
decompressed word = 91 + ffe = 8f hex

check bit 0 of the next nibble (nibble4)
bit 0 = size bit = 0 therefore we have a 4 bit word
get 4 bits (of nibble4) =0000
msb (bit4) = sign bit = 0 therefore we have a positive (delta) number
(2's complement)
bit3,bit2,bit1 = 000 = +0 hex
decompressed word = 8f + 0 = 8f hex

check bit 0 of the next nibble (nibble5)
bit 0 = size bit = 0 therefore we have a 4 bit word
get 4 bits (of nibble5) = 0000
msb (bit4) = sign bit = 0 therefore we have a positive (delta) number
(2's complement)
bit3,bit2,bit1 = 000 = + 0 hex
decompressed word = 8f + 0 = 8f hex

check bit 0 of the next nibble (nibble6)
bit 0 = size bit = 0 therefore we have a 4 bit word
get 4 bits (of nibble6) =0110
msb (bit4) = sign bit = 0 therefore we have a positive (delta) number
bit3,bit2,bit1 = 011 = + 3 hex
decompressed 10 bit word = 8f + 3 = 92 hex

check bit0 of the next nibble (nibble7)
bit 0 = size bit = 1 therefore we have a 12 bit word d 4 0

get 12 bits = nibble9, nibble8, nibble7
= 0000,0100,1101 (lsb)
msb (bit4) = sign bit = 0 therefore we have a positive (delta) number
bits 11 to 1 = 0000 0100 110 = +026 hex
decompressed 10 bit word = 092 + 026 hex = b8 hex
etc......

6 Decompressing End Bits
The total number of compressed bits will not necessarily be a multiple of 8. Accordingly, the last
byte of compressed data may contain invalid bits. This can cause the decompressor to continue to
produce more 10-bit words than what are generated by the final source (128 words for ch0, for
example). These words should be ignored. The decompressor separates the data from each source
by counting the number of decompressed 10-bit words corresponding to the source. For example
256 decompressed 10 bit words are counted for the fADC, and after that the next decompressed
word will be from Ch0, if recorded.

7 Formatting Data For Transmission To The Surface

Compressed data is recorded in memory as 32 bit words. The number of compressed bytes, given
by the header will not necessarily be a multiple of 32 bits. There may be invalid bytes contained
in the long word.
In order to get the full benefit of compression, these invalid bytes must not be sent to the surface
since they are an overhead that wastes bandwidth. Accordingly, only valid bytes must be used.
This will require concatenating the last byte of a hit, with the first byte of the next hit, and so on.
Compressed bytes from successive Hits would be packaged into a stream of data containing valid
bytes only.
(For more information regarding concatenation, refer to domapp API documentation at
http://www.npxdesigns.com/domapp/api.html).
This data will then need to be wrapped into the format of the serial transmitter, which contains
start and stop bits.

7 Processing Time

Four uncompressed words at a time are read out from the buffer at a rate of 10MHz.
The time between when the last data word is read out of the buffer and when the last compressed
data is ready to be written into look back memory is 150ns (6 clk40 cycles).

8 Use Of FPGA Resources

The compressor uses 2% of the logic elements, and 5% of the memory bits of the FPGA
EPXA10F1020C2.

