IceCube STF Test Description”
Page: 4

Date: 8/18/2003

[image: image1.wmf]

STF Test Description

To be filled out for all tests

Author/Requestor: Azriel Goldschmidt
Created: 08/18/2003
Page : 1

Tel.: 510 486-7518 Email Agoldschmidt@lbl.gov
Modified:
Form Version: 1.0 beta

STF Test Name: STF_ATWD_PEDESTAL_SWEEP_FORCED

STF Test Numerical ID:
Base Test Version #(none if new test):

Target Test Version #:

Target DOM-MB Software Release Version #:
TBD :

Short Description of STF Test :
In this test a number of waveforms from an ATWD chip/channel are collected with different values of the pedestal voltage. The ATWD capture is launched by forcing it (CPU type trigger). The pedestal_atwd vs pedestal_voltage is then studied and a pass/no-pass is defined based on the “gain” and linearity. The pedestal_atwd as a function of pedestal_voltage can be requested as output. If a clamp DAC setting is given this will test the “gain” and linearity within the non-clamped voltages. If a PMT is connected to the DOMMB the HV is turned OFF.

Applicable Test Environment Levels (check all that apply):

 FORMCHECKBOX
 Level 0
Tests exposed subsystem (DOM MB, PMT base, DOR card etc.) with possible addition of test fixtures, pulsers or cables.

 FORMCHECKBOX
 Level 1
Tests exposed DOM assembly with multiple subsystems connected (DOM MB plus PMT base, DOM MB plus flasher board, etc.) and possible test fixtures, pulsers or cables.

 FORMCHECKBOX
 Level 2
Tests sealed DOMs with possible connections to local coincidence connectors.

 FORMCHECKBOX
 Level 3
Tests sealed, fully deployed DOM.

Note: DOR card functionality under Linux OS assumed at level 1 and higher.

Additional Test Environment requirements: If PMT is NOT connected to the DOMMB a terminator resistor has to be connected on DOMMB (100 Ohm in JP13 for V2 DOMMB).

Required FPGA components or features needed for test execution (check all that apply, incl. applicable version info.)

Required DOM Main Board FPGA Features:

 FORMCHECKBOX
 None

 FORMCHECKBOX
 Fifo TP communications engine (ver.)

 FORMCHECKBOX
 Shared memory TP communications engine (ver.)

 FORMCHECKBOX
 Test flasher interface (ver.)

 FORMCHECKBOX
 Test ATWD/FADC readout (ver. 1)

 FORMCHECKBOX
 Test local coincidence (ver.)

 FORMCHECKBOX
 Test internal pulser (ver.)

 FORMCHECKBOX
 Test discriminator rate meters (ver.)

 FORMCHECKBOX
 DAQ flasher interface (ver.)

 FORMCHECKBOX
 DAQ local clock readout (ver.)

 FORMCHECKBOX
 DAQ ATWD/FADC readout (ver.)

 FORMCHECKBOX
 DAQ local coincidence (ver.)

 FORMCHECKBOX
 DAQ internal pulser (ver.)

 FORMCHECKBOX
 DAQ discriminator rate meters (ver.)

 FORMCHECKBOX
 DAQ trigger (ver.)r

 FORMCHECKBOX
 SN trigger histogram (ver.)

Required DOR Card FPGA Features:

 FORMCHECKBOX
 Normal operation (ver.)

 FORMCHECKBOX
 None

 FORMCHECKBOX
 Test FPGA (ver.)

 FORMCHECKBOX
 Other

Required Flasher Card FPGA Features:

 FORMCHECKBOX
 Normal operation

 FORMCHECKBOX
 None

 FORMCHECKBOX
 Other

Approvals (required for production STF releases)

Test Czar:
WBS 1.3.3:
WBS 1.3.4:
Other:

Permissible Parameter Types:

Parameter type
Description

Unsigned Short
Unsigned 16 bit value

Unsigned Long
Unsigned 32 bit value

Unsigned Short Array
Array of Unsigned 16 bit values

Boolean
TRUE or FALSE

1 Input parameters (required, parameter table plus optional desc.)

Name of Variable
Description
Input/Output & Type
Default & Range

ATWD_CONV_SPEED_DAC
DAC setting (of a 12 Bit device) for ATWD sampling speed (called “trigger bias”)
Input

Unsigned Short
850 [0-4095]

ATWD_RAMP_TOP_DAC
DAC setting (of a 12 Bit device) for ATWD Ramp Top Voltage
Input

Unsigned Short
2097 [0-4095]

ATWD_RAMP_BIAS_DAC

DAC setting (of a 12 Bit device) for ATWD Ramp Bias current
Input

Unsigned Short
3000 [0-4095]

ATWD_ANALOG_REF_DAC

DAC setting (of a 12 Bit device) for ATWD Analog Reference Voltage
Input

Unsigned Short
2048 [0-4095]

ATWD_PEDESTAL_DAC
DAC setting (of a 12 Bit device) for ATWD Pedestal Voltage
Input

Unsigned Short
1925 [0-4095]

ATWD_CH0_CLAMP
DAC setting (of a 12 Bit device) for clamping of the output of the first stage amp in Ch0
Input

Unsigned Short
0 [0-4095]

ATWD_CHIP_A_OR_B

Selects one of two chips (A or B) on the board: True=ATWD-A and False=ATWD-B
Input

Boolean
True [True/False]

ATWD_CHANNEL

Selects one of 3 PMT analog signal channels with different gains
Input

Unsigned Short
0 [0,1,2]

LOOP_COUNT
Not Used
Input Generic

Unsigned Long
1

 [0-1,000,000]

FILL_OUTPUT_ARRAYS

Fill up the output array with the atwd pedestal value vs pedestal setting. True=fill-array, False=do-not-fill.
Input Generic

Boolean
False

[True/False]

2 Output parameters (required, parameter table plus optional desc.)

Name of Variable
Description
InputOutput & Type
Default & Range

TEST_PASS_NOPASS
Pedestal sweep good/no-good
Output Generic

Boolean

HALF_RANGE_COUNTS_PER_VOLT
Number of ATWD counts per Volt computed from the sweep to half the range (750 mV or ½ the clamp).
Output

Signed Short

FULL_RANGE_COUNTS_PER_VOLT
Number of ATWD counts per Volt computed from the sweep to the full range (1500 mV or up to the clamp level).
Output

Signed Short

LINEARITY_PEDESTAL_PERCENT

Percent variation of the slope (count/volts) from ½ to full range.
Output

Signed Short

ATWD_PEDESTAL_SWEEP_FORCED

Pedestal value in ATWD counts for all pedestal settings.
Output

Unsigned Short Array[4096]

3 Detailed description of required external test conditions (optional).

None.

4 Detailed description of test algorithm (required).

A. Pretest checks:

1. All input DAC settings are programmed, for simplicity program both ATWD chips for the values that have separate DAC channels.

2. If HV base is connected, HV is set to 0.

B. Test algorithm:

1. Set the Pedestal DAC to 0 counts.

2. Take two waveforms for the ATWD_CHIP_A_OR_B/ATWD_CHANNEL channel requested with FORCED (CPU) trigger.

3. Calculate the sum of all the samples of the second waveform (discarding the first waveform, idle issue), save the result in the ATWD_PEDESTAL_SWEEP_FORCED[PedestalDACValue] array element (this array should also be returned if so requested by the FILL_OUTPUT_ARRAYS variable).

4. Increase the Pedestal DAC by 1 (up to its maximum of 4095) and repeat from step 2.

5. Next we want to obtain the pedestal values for the nominal Pedestal DAC value and for the Pedestal DACs corresponding to 750mV and 1500mV below that nominal pedestal. To do this:

 pedestal_nominal = ATWD_PEDESTAL_SWEEP_FORCED[ATWD_PEDESTAL_DAC],
nominal_mvolts = int(ATWD_PEDESTAL_DAC*5000.0/4096.0),

pedestal_half_range = ATWD_PEDESTAL_SWEEP_FORCED[int(ATWD_PEDESTAL_DAC-750.0*4096.0/5000.0)],
half_range_mvolts =int(int(ATWD_PEDESTAL_DAC-750.0*4096.0/5000.0) *5000.0/4096.0),

pedestal_full_range = ATWD_PEDESTAL_SWEEP_FORCED[int(ATWD_PEDESTAL_DAC-1500.0*4096.0/5000.0)],
full_range_mvolts = int(int(ATWD_PEDESTAL_DAC-1500.0*4096.0/5000.0) *5000.0/4096.0)

6. If ATWD_CH0_CLAMP is not zero, we want to measure the linearity within the non-clamped region (instead of the static voltage range) for that we need instead the following values:

pedestal_half_range = ATWD_PEDESTAL_SWEEP_FORCED[int((ATWD_PEDESTAL_DAC+(ATWD_CH0_CLAMP*2500.0/1024.0)*(4096.0/5000.0))/2.0)],
half_range_mvolts = int(int((ATWD_PEDESTAL_DAC+(ATWD_CH0_CLAMP*2500.0/1024.0)* (4096.0/5000.0))/2.0)*5000.0/4096.0),

pedestal_full_range = ATWD_PEDESTAL_SWEEP_FORCED[int(ATWD_CH0_CLAMP*(2500.0/1024.0)* (4096.0/5000.0))],
full_range_mvolts = int(ATWD_CH0_CLAMP*(2500.0/1024.0)).

7. Compute the Counts/Volt using half of the range and the full range (use floats or doubles for calculation, rounding to integers only at the end) :
HALF_RANGE_COUNTS_PER_VOLT =
int((pedestal_half_range -pedestal_nominal)*1000.0/(nominal_mvolts - half_range_mvolts)),
FULL_RANGE_COUNTS_PER_VOLT =
int((pedestal_full_range - pedestal_nominal)*1000.0/(nominal_mvolts - full_range_mvolts))

8. Calculate the “linearity” using just those two points (again use floating point arithmetics for the division:
LINEARITY_PEDESTAL_PERCENT = int(100.0*
HALF_RANGE_COUNTS_PER_VOLT / FULL_RANGE_COUNTS_PER_VOLT)

C. Success criteria:

1. Set TEST_PASS_NOPASS to pass value if ALL of the following are true:

2. 400 < FULL_RANGE_COUNTS_PER_VOLT < 700 (this is pretty arbitrary, requiring that 2mV/count be not grossly violated)

3. 95 < LINEARITY_PEDESTAL_PERCENT < 105 (this implies a 5% linearity in the “range”)

_1118643158.doc
[image: image1.bmp][image: image2.png]

