
Control of the LBNL Digital Optical Module Test Boards
using a PC-104 Single-Board Computer

John Jacobsen
Lawrence Berkeley National Laboratory

jacobsen@rust.lbl.gov

Last updated January 8, 2001

Table of Contents

OVERVIEW 1

SYNCSERVER 2

THE PERL INTERFACE TO SYNCSERVER 3

THE NETWORK INTERFACE TO SYNCSERVER 4

HOW TO COMPILE, INSTALL AND RUN THE SOFTWARE 7

NOTES ON CONFIGURATION OF THE PC-104/TEST BOARD SYSTEMS 8

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page 1

page 1

Overview

This document describes the software operation of the Digital Optical Modules (DOMs) via "Test
Boards." The Test Boards will be introduced in the '00/'01 season at South Pole to supplement
the existing communications functionality provided by the DESY data acquisition system (DAQ)
and terminal servers. The most important new features provided by the Test Boards will be the
demonstration of time calibration and of fast digital communications (up to about 60 kb/sec).

The Test Boards are controled by a Linux PC-1041 system. Up to four Test Boards sharing a PC-
104 bus and a partitioned address space can be controlled by one PC-104 unit via that bus. A
program called "syncserver" running on the PC-104 accepts commands over a network
connection and translates these commands into memory-mapped I/O on one or more Test Boards.
The Test Boards, in turn, control communications to the DOMs over the long cables. The Test
Board API is described in some detail by Jerry Przybylski at
http://rust.lbl.gov/~gtp/local/testboard_API.htm.

Most of the interaction between an application on the surface and the DOMs currently occurs via
an RS-232 serial connection which the Test Board translates into tri-state differential encoding
for transmission down the long cable. This process is largely transparent to syncserver - for
normal communication, a process opens a socket to a terminal server which in turn connects via
the RS-232 interface to the Test Board. However, for the transmission of time calibration pulses,
normal RS-232 communications is suspended, and the Test Board must be told to generate a
calibration pulse, and also can provide a digitization of the return pulse. This is the key
functionality which syncserver must provide.

The following diagram shows some of the relationships at play:

1 PC-104 is an embedded computing standard based on IBM-PC compatible, single board computers with a
compact form factor and a shared, compact ISA bus (also known as the PC-104 bus).

syncserver on
PC-104 (e.g.,

skua.spole.gov)

Test Board
DOM

Terminal Serverdomtest running on
fireball.spole.gov

DOMTBControl

Byte commands
and response data

Messaging
(over

network
socket)

Messages and timing signals

Messaging
(over RS-232)

Test Board

DOM

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page 2

page 2

The software itself can be divided into the following components:

1. The syncserver PC-104 control software (written in C), which talks to the FPGA in the test
board using memory-mapped registers in port I/O space.

2. A low-level C-language interface (portio.c / portio.h) which syncserver uses to talk to the
test boards. It also includes functionality to talk to a PC-104 relay switch system, used to turn
on or off the power to the test boards and other hardware.

3. A Jamplayer package, from Altera, Inc., ported to the PC-104 system. This package allows
syncserver to program and deprogram the FPGA.

4. A Perl package, called DOMTBControl.pm, which provides the interface whereby a Perl
application on the surface can issue commands to syncserver.

5. The Perl application domtest or the skeleton test program client_test.pl which uses
DOMTBControl.pm.

All these software components are in the CVS2 tree on rust.lbl.gov in the directories
domsoft/src/domio and domsoft/src/portio. The former directory is the location of the Perl test
and data logging programs (domtest, domtalk, DOMLogger). The latter is the location of the PC-
104-specific software (syncserver, portio, Jamplayer) and the DOMTBControl.pm Perl interface
to syncserver.

The following example will highlight the most important features of this design. Assume a Perl
application (e.g. domtest) on the surface wants to send a timing pulse down the cable. The
application must first create a DOMTBControl object, which opens a socket to syncserver
running on the PC-104. When a timing pulse is desired, the application calls a method of the
DOMTBControl object which sends a single byte command on the socket. Syncserver reads this
byte, interprets it as an instruction to send a timing signal, and uses functions implemented in
portio.c to write the appropriate registers in I/O space. The FPGA in the Test Board generates the
timing pulse, and provides a 16-byte integer timestamp of the timing pulse, which is then read out
by syncserver. If all goes well, syncserver then sends a confirmation response byte on the socket,
followed by the time stamp data, and the DOMTBControl method will return a "status ok" value
so that the application knows that everything's fine; the method also returns the time stamp data.

syncserver

As explained above, syncserver runs on the PC-104 and listens for network commands from a
client application. When a command is given, syncserver reads and writes the appropriate FPGA
registers on the test board, and sends response data back on the socket to the client.

The Test Board FPGA registers are accessed in memory-mapped I/O space using the inb() and
outb() funcions. A layer of routines, defined in portio.c, encapsulate this functionality. The
details of which bits in which registers have which functions are specified in Jerry's Test Board
API document.

2 CVS - Concurrent Versions System. This software allows for version control for code development by
multiple developers running on separate development machines. All the DOM software except for the
DOM Application and FPGA designs are in the domsoft CVS archive on rust.lbl.gov. For more
information, see http://rust.lbl.gov/~jacobsen/cvs.

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page 3

page 3

Syncserver runs setuid root (its file permissions should be 04755). The source code is located in
the portio directory. For compilation and installation instructions, see How to Compile, Install and
Run the software, below. Currently, installation and execution of syncserver has to be done by
hand, although this could probably be automated and improved.

The Perl interface to syncserver

The Perl package DOMTBControl.pm provides all the functionality one needs to talk to
syncserver, and therefore to the Test Board.

When you create a new DOMTBControl object, the "new" method opens a socket to the PC-104
system (syncserver listens on port 3666). Calls to that object's methods cause data to be written
to syncserver over the socket. This data consists of a control byte along with zero or more data
bytes, with the number of data bytes fixed by the value of the control byte. Response data
consists of a status byte followed by zero or more message data bytes. The details of the interface
are described below, in The Network Interface to syncserver.

If a DOMTBControl method returns the string "STATUS_OK" in the first argument, that
indicates that the command completed successfully. Otherwise, the error string will contain
information about what went wrong.

As an example, the following code sends a time tick down the cable to the DOM:

use DOMTBControl;

my $tb = DOMTBControl::new("skua.spole.gov"); # Open connection
die "Can't connect!\n" unless defined $tb;

Send the time pulse:
my ($err, $timestamp0, $timestamp1) = $tb->sendTimePulse(0);

if($err eq "STATUS_OK") {
 print "Time pulse was acknowledged by syncserver.\n";
 print "Timestamp: $timestamp0 $timestamp1.\n";
} else {
 print "Time pulse request generated an error : $err.\n";
}

$tb = undef;
When the test board object goes out of scope
or is no longer referred to by any
scalar, the socket connection to the PC-104 is closed.

For a real time calibration, the example would have to include DOMSet3 messages to the DOM
which tell it to "go quiet" (stop communications using the RS-232 interface), digitize the time
tick, send a time tick in response, and DOMTBControl functions to read out the received time
tick in the test board.

3 DOMSet is the Perl interface to the DOMs via the terminal server. See "Perl Classes for Interacting with
the DOM," by J. Jacobsen, http://rust.lbl.gov/amanda/dom/domsoft/docs/serial_communications.html

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page 4

page 4

Current methods supported by DOMTBControl.pm:

• new() -- Creates a DOMTBControl object and opens a connection to syncserver running
on the PC-104.

• echoTest() -- just a test to make sure things are working, by sending a byte to syncserver
and making sure syncserver sends the same byte back.

• FPGARegisterTest() -- syncserver writes byte patterns to FPGA Control Register 0 &
makes sure they can be read back ok

• sendTimePulse() -- causes syncserver to tell the FPGA on the Test Board to send a timing
pulse down the cable.

• readTBTimetickData() -- get timestamp and digitized waveform of DOM timetick
received by test board. (Returns error string, time stamp, and reference to an array of
waveform values).

• FPGAUnload() -- unload the current program in the FPGA on the PC/104 system
• FPGAListFiles() -- list currently available FPGA files on the PC/104 system
• ForceDOMCommunicationsEnable() -- force the test board FPGA to reenable

communications with the DOM over the RS-232/terminal server connection.
• ReadFPGARegister() -- read a test board FPGA register directly
• WriteFPGARegister() -- write a test board FPGA register directly

The Network Interface to syncserver

This section consists of messages to syncserver and their response values. In other words,
this is the API which DOMTBControl.pm uses to communicate with syncserver.
Messages are all call-and-response, with the call consisting of a command byte with zero
or more data bytes, and the response consisting of a status byte with zero or more data
bytes. Please note - all multi-byte integer values are sent big-endian (network byte
order).

Messages to syncserver

Message: Echoback
Byte value: 0x02
Associated DOMTBControl method: echoTest
Number of arguments: 1
Return value: the argument
Code status: implemented

Message: FPGA Test
Byte value: 0x09
Associated DOMTBControl method: FPGARegisterTest
Number of arguments: 1 byte (test board ID)
Return value: status byte
Code status: implemented

Message: Issue Timing Pulse

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page 5

page 5

Byte value: 0x03
Associated DOMTBControl method: sendTimePulse
Number of arguments: 1 byte (test board ID)
Return values:

Status byte
If status is STATUS_OK, two four-byte integer timestamps of timing pulse.

Code status: implemented

Message: Read Received Timetick
Byte value: 0x08
Associated DOMTBControl method: readTBTimetickData
Number of arguments: 1 byte (test board ID)
Return values:

Status byte
If status is STATUS_OK, two four-byte integer timestamps of the received pulse,
as well as 256 bytes containing the digitized waveform.

Code status: implemented

Message: FPGA load command
Byte value: 0x04
Associated DOMTBControl method: loadFPGAFile
Number of arguments: 1 byte (test board ID) followed by variable number of bytes (name of jam
file, terminated with \n)
Return value: status byte (see syncserver.h).
Code status: implemented

Message: FPGA list available designs
Byte value: 0x05
Associated DOMTBControl method: listFPGAFiles
Return message:

Status byte
If status byte is STATUS_OK, rest of the bytes are a string containing file names,
separated by commas, terminated by a newline.

Code status: implemented

Message: FPGA unload command
Byte value: 0x06
Associated DOMTBControl method: unloadFPGA
Number of arguments: 1 byte (test board ID)
Return message: Command status byte
Code status: not implemented at lowest level (needs API info from Jerry); otherwise implemented

Message: FPGA status command
Byte value: 0x07
Associated DOMTBControl method: getFPGAStatus
Number of arguments: 1 byte (test board ID)
Return message:

Command status byte
FPGA status : 1 (loaded) or 0 (unloaded)

Code status: not implemented (needs API info)

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page 6

page 6

Message: Force DOM Communications Enable
Byte value: 0x0A
Associated DOMTBControl method: ForceDOMCommunicationsEnable
Number of arguments: 1 byte (test board ID)
Return message: command status byte
Code status: implemented.

Message: Read FPGA Register
Byte value: 0x0B
Associated DOMTBControl method: ReadFPGARegister
Arguments: 1 byte test board ID, 1 byte register number
Return message: status byte, register contents byte
Code status: implemented

Message: Write FPGA Register
Byte value: 0x0C
Associated DOMTBControl method: WriteFPGARegister
Arguments: 1 byte test board ID, 1 byte register number, 1 byte value to write
Return message: status byte
Code status: implemented

Message: Turn Power Relay On
Byte value: 0x0D
Associated DOMTBControl method: PowerRelayOn
Arguments: 1 byte relay number
Return message: status byte
Code status: implemented

Message: Turn Power Relay Off
Byte value: 0x0E
Associated DOMTBControl method: PowerRelayOff
Arguments: 1 byte relay number
Return message: status byte
Code status: implemented

A response of UNKNOWN_COMMAND (byte value 2) is given if the command byte is not one
of the above commands.

Message Status Response Byte Definitions

Status: STATUS_OK
Byte value: 0x01
Meaning: It worked.

Status: UNKOWN_COMMAND
Byte value: 0x02
Meaning: I don't know what you're talking about

Status: FUNC_NOT_IMPL
Byte value: 0x04

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page 7

page 7

Meaning: I know what you're talking about, but I can't do it yet

Status: FPGA_FILE_NOT_FOUND
Byte value: 0x03
Meaning: You wanted me to load an FPGA file that I can't find in the usual place on the PC-104.

Status: FILENAME_TOO_LONG
Byte value: 0x05
Meaning: The name of the FPGA file you asked me to load is too long.

Status: JAM_LOAD_FAILED
Byte value: 0x06
Meaning: The Jamplayer software couldn't load the FPGA file for some reason.

Status: SHORT_WF_READ
Byte value: 0x07
Meaning: I didn't get the expected number of bytes from the digitized waveform.

Status: CANT_READ_WF
Byte value: 0x08
Meaning: I can't read the waveform data from the COM ADC.

Status: FPGA_TEST_FAILED
Byte value: 0x09
Meaning: Read/write test failed

Status: REGI_OUT_OF_RANGE
Byte value: 0x0A
Meaning: The FPGA register number was too large

How to Compile, Install and Run the software

To build syncserver and install DOMTBControl.pm:
1. change to domsoft/src/portio
2. cvs update your code
3. make
4. make install (this copies DOMTBControl.pm to /usr/local/dom/lib)

To install syncserver on the PC-104 system:
1. in the portio directory, run update_syncserver. This copies syncserver to the PC-104 system

in the directory /tmp and gives it the correct file permissions

To run syncserver:
1. Telnet to the PC-104 system
2. Verify, using "ps ax | grep syncserver" that syncserver isn't running
3. If it is, kill it with "kill -9 <pid>" where <pid> is the process ID of the currently running

syncserver.
4. Start syncserver with "/tmp/syncserver".

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page 8

page 8

5. On the client machine (e.g., fireball.spole.gov or rust.lbl.gov) run client_test.pl or domtest. If
running domtest, choose "Test Board Functions" followed by "connect to test board/PC-104
system." If it connects successfully, syncserver is running and accepting connections.

To install an FPGA design on the PC-104 system:
1. FTP to the PC-104 system with username "dom"
2. cd /tmp
3. put the FPGA design file
4. telnet to the PC-104 system
5. su to root
6. make the root filesystem writable (see General Notes in Notes on Configuration of the PC-

104/Test Board Systems)
7. move the FPGA design file from /tmp to /home/dom/fpga
8. make the root filesystem read-only

If syncserver and domtest are running, you can test that the FPGA design has made it by selecting
"Load a new FPGA file on PC-104 system" from the Test Board Functions menu, and loading the
new design.

Notes on Configuration of the PC-104/Test Board Systems

As of this writing, there is one working PC/104 system (skua), with two others which have been
received and are being configured (petrel and fulmar)4. The systems are made by Emac Inc.
(www.emacinc.com) and are configured as follows:

PCM-3346 Single board PC-104 computer
64MB 144p EDO SODIMM (RAM)
3.5" HD Floppy Drive (currently on back-order)
3.5" IDE Hard Disk
48MB flash disk
Linux installation on IDE drive and Flash disk
Perl installation on IDE disk
Small SMTP client for sending mail installed on both disks
Realtime extensions installed on both disks
Apache Web server installed on both disks

Emac has fairly extensive hardware and configuration documentation for this system:
The PCM-3364 User's Manual, http://rust.lbl.gov/~jacobsen/docs/dom/3346_fnt.pdf

is a description of the hardware and low-level configuration and
The Servier in a Box Manual, http://rust.lbl.gov/~jacobsen/docs/dom/sib_20_manual.pdf

is a description of the Linux system and software configuration.

The following notes should fill in some of the missing details on what extra steps had to be taken
to get the PC-104 systems to run at LBNL and the Pole.

A few general notes.

4 The names refer to Antarctic birds

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page 9

page 9

• Our systems are set up to run off the flash disks, with the hard disks as backups in case
problems arise with the flash disks.

• The flash disks are configured read-only to help ensure longevity for the flash filesystems,
with directories such as /tmp implemented by RAM disks. To make the root filesystem
writable, issue the following as root:
 mount -o remount,rw /dev/tffs1 /
To make it read-only again, substitute "ro" for "rw".

The installation / configuration sequence for the PC-104 systems is as follows:

1) If not already done, cable the PC-104 unit. The cables on petrel and fulmar are labeled, but
you may need to refer to the connector diagram on the PCM-3364 User's Manual, pp. 9-10.
If connector orientation is ambiguous, match the triangle on the connector with the arrow on
the PCB.
The crucial things to cable here are the power supply, network cable, and, if interactivity is
desired, keyboard and VGA monitor.

2) See if the unit powers on ok and passes the self-tests. Examine the BIOS settings before it
boots the operating system. Unit is configured to boot from the flash disk (Disk on a Chip or
DOC) by default.

3) Make sure Linux boots.
4) Log in as root, with emac_inc as the password.
5) Quit the configuration menu. Mount / with read/write access: "mount -o remount,rw

/dev/tffs1 /". Use the "ae" editor to comment out the line in /root/.profile invoking the
SIBconfig.sh script. The script can be invoked by hand later with "/root/SIBconfig.sh".
Getting rid of this line avoids the automatic running of the script when root logs in.

6) Change the password with the "passwd" command. Create a "dom" account by editing
/etc/passwd (again, use the "ae" editor, and set the UID to 400) and create a home directory
/home/dom.

7) Run the configuration script /root/SIBconfig.sh
8) Change the host name (e.g., skua.spole.gov)
9) Change the ethernet settings. Use ethernet device zero. Enter IP address, gateway, netmask,

network address, broadcast address.
10) Change the default gateway by selecting "3) Routing tables" followed by "3) Set default

gateway". Use the same number here as the network address in the previous step.
11) Change the DNS nameserver addresses (menu item 5) - remove old nameservers and static

host address, add new nameservers and static host address (use the same name as the
hostname you entered in item 8). Also change the domain and search names by editing
/etc/resolv.conf with the "ae" editor. You may have to add the nameserver entries by hand
when editing this file.

12) Create FPGA JAM files directory /home/dom/fpga (see instructions, above)
13) Reboot the machine using "shutdown -r now", make sure it boots and can be talked to on the

network. Install and run syncserver (see instructions, above).

Further instructions for configuring the PC-104 system to boot from the hard disk:

14) Cable the hard disk. The IDE cable goes from the PC-104 system to the disk. There should
also be a red, yellow and black four-wire power cable from the power supply to the disk.

15) Power up and hit the "DEL" key as soon as you see the first BIOS screen. Select "Advanced
BIOS Features." Set the primary boot disk to HDD0 (hard disk), secondary boot disk to

John Jacobsen Control of the LBNL Digital Optical Module Test Boards using a PC-104 Single-Board Computer Page
10

page 10

HDD1 (flash disk), third boot disk to floppy. Escape to main menu and then select "Save and
Exit Setup."

16) At the LILO prompt type Linux, or just hit return, or just wait.
17) Wait for the system to boot.
18) Log in as root, typing default password.
19) Change root password w/ passwd command.
20) If not already present, add a user "dom" with the following command: "useradd -u 400 -s

/bin/tcsh dom"
21) Change the password on the dom account with the passwd command.
22) Log in as dom using "su - dom". Create the "fpga" directory with "mkdir fpga". Log out of

the dom account with "logout"
23) Edit the following files:

/etc/HOSTNAME -- change host name
/etc/hosts -- change host name and IP address. Leave localhost line alone.
/etc/resolv.conf -- change domain name and add nameserver info.
/etc/sysconfig/network -- change info for HOSTNAME, DOMAINNAME, GATEWAY.
/etc/sysconfig/network-scripts/ifcfg-eth0 -- change info for IPADDR, NETMASK,
NETWORK (same as GATEWAY, above), BROADCAST.

24) Finally, reboot the machine ("shutdown -r now"), verify that you can log in and use the ping
command locally and remotely to test the new network settings.

In this configuration, with both hard disks and flash disks ready to boot, unplugging the power to
the hard disk will result in automatically booting from the flash disk. As of this writing, this is
the default behaviour.

